DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE
 B.Sc(H) Sem - IV , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2018-19

Sub: MATHEMATICS, Course - C10

Full Marks: 10
Time: $\mathbf{3 0} \mathrm{m}$.

Answer any five questions:

1. Give an example of infinite ring of characteristic 2 .
2. Find the number of divisor of zeros in the ring $M_{2}\left(\mathbb{Z}_{3}\right)$.
3. Let addition \oplus and multiplication \odot be defined on the ring $(\mathbb{Z},+, \bullet)$ by $a \oplus b=a+b-$ $1, a \odot b=a+b=a+b-a \bullet b$ for $a, b \in \mathbb{Z}$. prove that $(\mathbb{Z}, \oplus, \odot)$ is a ring with unity containing no divisor of zero.
4. If \mathbb{R} is a ring with unity such that $(x y)^{2}=x^{2} y^{2}$ for all $x, y \in \mathbb{R}$, then show that \mathbb{R} is a commutative ring.
5. Prove that a Boolean ring is a commutative ring.
6. Examine if the set $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y-z=1,2 x-y=z=2\right\}$ is a subspace of \mathbb{R}^{3}.
7. Let V be a real vector space with a basis $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{n}\right\}$. Examine if $\left\{v_{1}+v_{2}, v_{2}+\right.$ $\left.v_{3}, \ldots \ldots \ldots v_{n}+v_{1}\right\}$ is also a basis of V .
8. Find the dimension of the subspace $S=$ the set of all 2×2 real symmetric matrices of the vector space $\mathbb{R}_{2 \times 2}$.
9. Examine if the ring of matrices $\left\{\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right): a, b \in \mathbb{R}\right\}$ is a field.
10. Give an example of a finite ring R with unity I and a subring S of R with unity I different from I.
11. Find the maximal ideals in the ring \mathbb{Z}_{6}.
12. Give an Example of a ring R and a maximal ideal M in R such that M is not a prime ideal in R.
13. Prove that a field is an integral domain.
14. If R be a ring, prove that $\mathrm{Z}(\mathrm{R})=\{x \in R: x r=r x, \forall r \in R\}$ is a commutative subring of R .
15. Prove that a division ring is a simple ring.
16. Let S and T be two ideals of a ring R . Then show that $\mathrm{S} \cap \mathrm{T}$ is an ideal of R .
