DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – IV , INTERNAL ASSESSMENT-1st , 2018-19 Sub: MATHEMATICS, Course – C10

Full Marks: 10 Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Give an example of infinite ring of characteristic 2.
- 2. Find the number of divisor of zeros in the ring $M_2(\mathbb{Z}_3)$.
- 3. Let addition \oplus and multiplication \odot be defined on the ring $(\mathbb{Z}, +, \bullet)$ by $a \oplus b = a + b 1$, $a \odot b = a + b = a + b a \bullet b$ for $a, b \in \mathbb{Z}$. prove that $(\mathbb{Z}, \oplus, \odot)$ is a ring with unity containing no divisor of zero.
- 4. If \mathbb{R} is a ring with unity such that $(xy)^2 = x^2y^2$ for all $x, y \in \mathbb{R}$, then show that \mathbb{R} is a commutative ring.
- 5. Prove that a Boolean ring is a commutative ring.
- 6. Examine if the set $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y z = 1, 2x y = z = 2\}$ is a subspace of \mathbb{R}^3 .
- 7. Let V be a real vector space with a basis $\{v_1, v_2, \dots, v_n\}$. Examine if $\{v_1 + v_2, v_2 + v_3, \dots, v_n + v_1\}$ is also a basis of V.
- 8. Find the dimension of the subspace S = the set of all 2 × 2 real symmetric matrices of the vector space $\mathbb{R}_{2\times 2}$.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – IV , INTERNAL ASSESSMENT-2nd , 2018-19 Sub: MATHEMATICS, Course – C10

Full Marks: 10 Answer any five questions: $\begin{array}{l} \text{Time: 30 m.}\\ (2\times 5=10) \end{array}$

- 1. Examine if the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a field.
- 2. Give an example of a finite ring R with unity I and a subring S of R with unity I' different from I.
- 3. Find the maximal ideals in the ring \mathbb{Z}_6 .
- 4. Give an Example of a ring R and a maximal ideal M in R such that M is not a prime ideal in R.
- 5. Prove that a field is an integral domain.
- 6. If R be a ring, prove that $Z(R) = \{x \in R : xr = rx, \forall r \in R\}$ is a commutative subring of R.
- 7. Prove that a division ring is a simple ring.
- 8. Let S and T be two ideals of a ring R. Then show that $S \cap T$ is an ideal of R.